The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation

نویسندگان

  • Jeffrey M. Williams
  • Takamasa Inoue
  • Lindsey Banks
  • Billy Tsai
چکیده

Cholera toxin (CT) traffics from the host cell surface to the endoplasmic reticulum (ER), where the toxin's catalytic CTA1 subunit retrotranslocates to the cytosol to induce toxicity. In the ER, CT is captured by the E3 ubiquitin ligase Hrd1 via an undefined mechanism to prepare for retrotranslocation. Using loss-of-function and gain-of-function approaches, we demonstrate that the ER-resident factor ERdj5 promotes CTA1 retrotranslocation, in part, via its J domain. This Hsp70 cochaperone regulates binding between CTA and the ER Hsp70 BiP, a chaperone previously implicated in toxin retrotranslocation. Importantly, ERdj5 interacts with the Hrd1 adaptor Sel1L directly through Sel1L's N-terminal lumenal domain, thereby linking ERdj5 to the Hrd1 complex. Sel1L itself also binds CTA and facilitates toxin retrotranslocation. By contrast, EDEM1 and OS-9, two established Sel1L binding partners, do not play significant roles in CTA1 retrotranslocation. Our results thus identify two ER factors that promote ER-to-cytosol transport of CTA1. They also indicate that ERdj5, by binding to Sel1L, triggers BiP-toxin interaction proximal to the Hrd1 complex. We postulate this scenario enables the Hrd1-associated retrotranslocation machinery to capture the toxin efficiently once the toxin is released from BiP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation

Cholera toxin (CT) intoxicates cells by trafficking from the cell surface to the endoplasmic reticulum (ER), where the catalytic CTA1 subunit hijacks components of the ER-associated degradation (ERAD) machinery to retrotranslocate to the cytosol and induce toxicity. In the ER, CT targets to the ERAD machinery composed of the E3 ubiquitin ligase Hrd1-Sel1L complex, in part via the activity of th...

متن کامل

Protein disulfide isomerase–like proteins play opposing roles during retrotranslocation

Misfolded proteins in the endoplasmic reticulum (ER) are retained in the organelle or retrotranslocated to the cytosol for proteasomal degradation. ER chaperones that guide these opposing processes are largely unknown. We developed a semipermeabilized cell system to study the retrotranslocation of cholera toxin (CT), a toxic agent that crosses the ER membrane to reach the cytosol during intoxic...

متن کامل

Role of p97 AAA-ATPase in the retrotranslocation of the cholera toxin A1 chain, a non-ubiquitinated substrate.

The enzymatic A1 chain of cholera toxin retrotranslocates across the endoplasmic reticulum membrane into the cytosol, where it induces toxicity. Almost all other retrotranslocation substrates are modified by the attachment of polyubiquitin chains and moved into the cytosol by the ubiquitin-interacting p97 ATPase complex. The cholera toxin A1 chain, however, can induce toxicity in the absence of...

متن کامل

p97 Is in a complex with cholera toxin and influences the transport of cholera toxin and related toxins to the cytoplasm.

Certain protein toxins, including cholera toxin, ricin, and Pseudomonas aeruginosa exotoxin A, are transported to the lumen of the endoplasmic reticulum where they retro-translocate across the endoplasmic reticulum membrane to enter the cytoplasm. The mechanism of retrotranslocation is poorly understood but may involve the endoplasmic reticulum-associated degradation pathway. The AAA ATPase p97...

متن کامل

Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle.

Misfolded and incorrectly assembled proteins in the secretory pathway are eliminated by ubiquitylation and proteasomal degradation in a process known as ER-associated degradation (ERAD). Retrotranslocation of diverse substrates including misfolded proteins and viruses occurs through channels in the ER membrane, which are also utilized for host cell penetration by A/B class protein toxins such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013